Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 22(12): 1444-1453, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619980

RESUMEN

Integrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells. The antibody component of SGN-B6A is specific for integrin beta-6 and does not bind other alpha-v family members. In preclinical studies, this ADC has demonstrated activity in vivo in models derived from non-small cell lung, pancreatic, pharyngeal, and bladder carcinomas spanning a range of antigen expression levels. In nonclinical toxicology studies in cynomolgus monkeys, doses of up to 5 mg/kg weekly for four doses or 6 mg/kg every 3 weeks for two doses were tolerated. Hematologic toxicities typical of MMAE ADCs were dose limiting, and no significant target-mediated toxicity was observed. A phase I first-in-human study is in progress to evaluate the safety and antitumor activity of SGN-B6A in a variety of solid tumors known to express integrin beta-6 (NCT04389632).


Asunto(s)
Antineoplásicos , Carcinoma , Inmunoconjugados , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Pronóstico , Integrinas , Línea Celular Tumoral
2.
Mol Cancer Ther ; 22(4): 421-434, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800443

RESUMEN

SGN-CD228A is an investigational antibody-drug conjugate (ADC) directed to melanotransferrin (CD228, MELTF, MFI2, p97), a cell-surface protein first identified in melanoma. SGN-CD228A consists of a humanized antibody, hL49, with high specificity and affinity for CD228 that is stably conjugated to 8 molecules of the clinically validated microtubule-disrupting agent monomethyl auristatin E (MMAE) via a novel glucuronide linker. We performed comprehensive IHC studies, which corroborated published RNA sequencing data and confirmed low CD228 expression in normal tissues and high expression in several cancers, including melanoma, squamous non-small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), colorectal cancer, and pancreatic cancer. SGN-CD228A was efficiently internalized in various tumor cell types, and its cytotoxic activity was dependent on CD228 expression and internalization and intrinsic sensitivity to the MMAE payload. Compared with the valine-citrulline dipeptide linker, the novel glucuronide linker increased the cellular retention of MMAE in vitro and conferred improved antitumor activity against melanoma cell lines in vitro and in vivo. In addition, SGN-CD228A was active across melanoma, TNBC, and NSCLC cell line- and patient-derived xenograft models with heterogeneous antigen expression. In vivo, CD228 expression was important for response to SGN-CD228A but was not well correlated across all tumor types, suggesting that other factors associated with ADC activity are important. Overall, SGN-CD228A is a CD228-directed, investigational ADC that employs innovative technology and has compelling preclinical antitumor activity. SGN-CD228A is investigated in a Phase I clinical trial (NCT04042480) in patients with advanced solid tumors.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Inmunoconjugados , Neoplasias Pulmonares , Melanoma , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Glucurónidos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Nat Biotechnol ; 37(7): 761-765, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31133742

RESUMEN

The use of monoclonal antibodies in cancer therapy is limited by their cross-reactivity to healthy tissue. Tumor targeting has been improved by generating masked antibodies that are selectively activated in the tumor microenvironment, but each such antibody necessitates a custom design. Here, we present a generalizable approach for masking the binding domains of antibodies with a heterodimeric coiled-coil domain that sterically occludes the complementarity-determining regions. On exposure to tumor-associated proteases, such as matrix metalloproteinases 2 and 9, the coiled-coil peptides are cleaved and antigen binding is restored. We test multiple coiled-coil formats and show that the optimized masking domain is broadly applicable to antibodies of interest. Our approach prevents anti-CD3-associated cytokine release in mice and substantially improves circulation half-life by protecting the antibody from an antigen sink. When applied to antibody-drug conjugates, our masked antibodies are preferentially unmasked at the tumor site and have increased anti-tumor efficacy compared with unmasked antibodies in mouse models of cancer.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias/terapia , Animales , Anticuerpos Monoclonales/química , Supervivencia Celular , Citocinas/metabolismo , Células HEK293 , Humanos , Inmunoconjugados , Integrinas/metabolismo , Ratones , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
4.
Sci Rep ; 8(1): 13442, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194327

RESUMEN

More than 70 human adenoviruses with type-dependent pathogenicity have been identified but biological information about the majority of these virus types is scarce. Here we employed multiple sequence alignments and structural information to predict receptor usage for the development of an adenoviral vector with novel biological features. We report the generation of a cloned adenovirus based on human adenovirus type 17 (HAdV17) with high sequence homology to the well characterized human adenovirus type 37 (HAdV37) that causes epidemic keratoconjunctivitis (EKC). Our study revealed that human CD46 (CD46) is involved in cell entry of HAdV17. Moreover, we found that HAdV17 infects endothelial cells (EC) in vitro including primary cells at higher efficiencies compared to the commonly used human adenovirus type 5 (HAdV5). Using a human CD46 transgenic mouse model, we observed that HAdV17 displays a broad tropism in vivo after systemic injection and that it transduces ECs in this mouse model. We conclude that the HAdV17-based vector may provide a novel platform for gene therapy.


Asunto(s)
Adenovirus Humanos/fisiología , Células Endoteliales , Proteína Cofactora de Membrana/metabolismo , Transducción Genética , Tropismo Viral/fisiología , Internalización del Virus , Animales , Células CHO , Cricetulus , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Vectores Genéticos , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Jurkat , Proteína Cofactora de Membrana/genética , Ratones Transgénicos
5.
J Control Release ; 272: 9-16, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29305923

RESUMEN

Carcinomas contain tight junctions that can limit the penetration and therefore therapeutic efficacy of anticancer agents, especially those delivered by nano-carrier systems. The junction opener (JO) protein is a virus-derived protein that can transiently open intercellular junctions in epithelial tumors by cleaving the junction protein desmoglein-2 (DSG2). Co-administration of JO was previously shown to significantly increase the efficacy of various monoclonal antibodies and chemotherapy drugs in murine tumor models by allowing for increased intratumoral penetration of the drugs. To investigate the size-dependent effect of JO on nanocarriers, we used PEGylated gold nanoparticles (AuNPs) of two different sizes as model drugs and investigated their biodistribution following JO protein treatment. By inductively coupled plasma mass spectrometry (ICP-MS), JO was found to significantly increase bulk tumor accumulation of AuNPs of 35nm but not 120nm particles in both medium (200-300mm3) and large (500-600mm3) tumors. Image analysis of tumor sections corroborates this JO-mediated increase in tumor accumulation of AuNPs. Quantitative intratumoral distribution analyses show that most nanoparticles were found within 100µm of the vasculature, and that the penetration profiles of AuNPs are not significantly affected by JO treatment at the 6h timepoint.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/análogos & derivados , Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Neoplasias/metabolismo , Uniones Estrechas , Células A549 , Animales , Doxorrubicina/administración & dosificación , Oro/farmacocinética , Humanos , Ratones SCID , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética
6.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077642

RESUMEN

Defensins are small antimicrobial peptides capable of neutralizing human adenovirus (HAdV) in vitro by binding capsid proteins and blocking endosomal escape of virus. In humans, the alpha defensin HD5 is produced by specialized epithelial cells of the gastrointestinal and genito-urinary tracts. Here, we demonstrate, using patient biopsy specimens, that HD5 is also expressed as an active, secreted peptide by epithelial ovarian and lung cancer cells in situ This finding prompted us to study the role of HD5 in infection and spread of replication-competent, oncolytic HAdV type 3 (HAdV3). HAdV3 produces large amounts of penton-dodecahedra (PtDd), virus-like particles, during replication. We have previously shown that PtDd are involved in opening epithelial junctions, thus facilitating lateral spread of de novo-produced virions. Here, we describe a second function of PtDd, namely, the blocking of HD5. A central tool to prove that viral PtDd neutralize HD5 and support spread of progeny virus was an HAdV3 mutant virus in which formation of PtDd was disabled (mut-Ad3GFP, where GFP is green fluorescent protein). We demonstrated that viral spread of mut-Ad3GFP was blocked by synthetic HD5 whereas that of the wild-type (wt) form (wt-Ad3GFP) was only minimally impacted. In human colon cancer Caco-2 cells, induction of cellular HD5 expression by fibroblast growth factor 9 (FGF9) significantly inhibited viral spread and progeny virus production of mut-Ad3GFP but not of wt-Ad3GFP. Finally, the ectopic expression of HD5 in tumor cells diminished the in vivo oncolytic activity of mut-Ad3GFP but not of wt-Ad3GFP. These data suggest a new mechanism of HAdV3 to overcome innate antiviral host responses. Our study has implications for oncolytic adenovirus therapy.IMPORTANCE Previously, it has been reported that human defensin HD5 inactivates specific human adenoviruses by binding to capsid proteins and blocking endosomal escape of virus. The central new findings described in our manuscript are the following: (i) the discovery of a new mechanism used by human adenovirus serotype 3 to overcome innate antiviral host responses that is based on the capacity of HAdV3 to produce subviral penton-dodecahedral particles that act as decoys for HD5, thus preventing the inactivation of virus progeny produced upon replication; (ii) the demonstration that ectopic HD5 expression in cancer cells decreases the oncolytic efficacy of a serotype 5-based adenovirus vector; and (iii) the demonstration that epithelial ovarian and lung cancers express HD5. The study improves our understanding of how adenoviruses establish infection in epithelial tissues and has implications for cancer therapy with oncolytic adenoviruses.


Asunto(s)
Adenovirus Humanos/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Evasión Inmune , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , alfa-Defensinas/metabolismo , Biopsia , Células CACO-2 , Femenino , Humanos , Neoplasias Pulmonares/patología , Neoplasias Ováricas/patología
7.
Blood ; 128(18): 2206-2217, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27554082

RESUMEN

Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin-Sca1+Kit- cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.


Asunto(s)
Terapia Genética/métodos , Movilización de Célula Madre Hematopoyética/métodos , Proteína Cofactora de Membrana/biosíntesis , Transducción Genética/métodos , Adenoviridae , Animales , Vectores Genéticos/administración & dosificación , Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL
8.
Angew Chem Int Ed Engl ; 55(39): 12013-7, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27538359

RESUMEN

Clinical translation of nucleic acids drugs has been stunted by limited delivery options. Herein, we report a synthetic polymer designed to mimic viral mechanisms of delivery called VIPER (virus-inspired polymer for endosomal release). VIPER is composed of a polycation block for condensation of nucleic acids, and a pH-sensitive block for acid-triggered display of a lytic peptide to promote trafficking to the cell cytosol. VIPER shows superior efficiencies compared to commercial agents when delivering genes to multiple immortalized cell lines. Importantly, in murine models, VIPER facilitates effective gene transfer to solid tumors.


Asunto(s)
Materiales Biomiméticos/química , ADN/administración & dosificación , Técnicas de Transferencia de Gen , Poliaminas/química , Polímeros/química , Virus/química , Animales , Línea Celular Tumoral , ADN/genética , ADN/uso terapéutico , Terapia Genética , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ratones , Neoplasias/genética , Neoplasias/terapia , Polielectrolitos
9.
Mol Ther Methods Clin Dev ; 5: 16013, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069950

RESUMEN

Rituximab is a mouse/human chimeric monoclonal antibody targeted toward CD20. It is efficient as first-line therapy of CD20-positive B-cell malignancies. However, a large fraction of treated patients relapse with rituximab-resistant disease. So far, only modest progress has been made in treatment options for rituximab refractory patients. One of the mechanisms for rituximab resistance involves the upregulation of CD46, which is a key cell surface protein that blocks the activation of complement. We have recently developed a technology that depletes CD46 from the cell surface and thereby sensitizes tumor cells to complement-dependent cytotoxicity. This technology is based on a small recombinant protein, Ad35K++ that binds with high affinity to CD46. In preliminary studies using a 6 × histidinyl tagged protein, we had demonstrated that intravenous Ad35K++ injection in combination with rituximab was safe and increased rituximab-mediated killing of CD20-positive target cells in mice and nonhuman primates (NHPs). The presence of the tag, while allowing for easy purification by Ni-NTA chromatography, has the potential to increase the immunogenicity of the recombinant protein. For clinical application, we therefore developed an Ad35K++ protein without His-tag. In the present study, we performed preclinical studies in two animal species (mice and NHPs) with this protein demonstrating its safety and efficacy. These studies estimated the Ad35K++ dose range and treatment regimen to be used in patients. Furthermore, we showed that intravenous Ad35K++ injection triggers the shedding of the CD46 extracellular domain in xenograft mouse tumor models and in macaques. Shed serum CD46 can be measured in the serum and can potentially be used as a pharmacodynamic marker for monitoring Ad35K++ activity in patient undergoing treatment with this agent. These studies create the basis for an investigational new drug application for the use of Ad35K++ in combination with rituximab in the treatment of patients with B-cell malignancies.

10.
Hum Gene Ther ; 27(4): 325-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26993072

RESUMEN

A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses.


Asunto(s)
Adenoviridae/fisiología , Células Epiteliales/metabolismo , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/fisiología , Proteínas Recombinantes/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Desmogleína 2/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones SCID , Mutación/genética , Replicación Viral/efectos de los fármacos
11.
J Virol ; 89(21): 10841-59, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292319

RESUMEN

UNLABELLED: We recently discovered that desmoglein 2 (DSG2) is a receptor for human adenovirus species B serotypes Ad3, Ad7, Ad11, and Ad14. Ad3 is considered to be a widely distributed human pathogen. Ad3 binding to DSG2 triggers the transient opening of epithelial junctions. Here, we further delineate the mechanism that leads to DSG2-mediated epithelial junction opening in cells exposed to Ad3 and recombinant Ad3 fiber proteins. We identified an Ad3 fiber knob-dependent pathway that involves the phosphorylation of mitogen-activated protein (MAP) kinases triggering the activation of the matrix-metalloproteinase ADAM17. ADAM17, in turn, cleaves the extracellular domain of DSG2 that links epithelial cells together. The shed DSG2 domain can be detected in cell culture supernatant and also in serum of mice with established human xenograft tumors. We then extended our studies to Ad14 and Ad14P1. Ad14 is an important research and clinical object because of the recent appearance of a new, more pathogenic strain (Ad14P1). In a human epithelial cancer xenograft model, Ad14P1 showed more efficient viral spread and oncolysis than Ad14. Here, we tested the hypothesis that a mutation in the Ad14P1 fiber knob could account for the differences between the two strains. While our X-ray crystallography studies suggested an altered three-dimensional (3D) structure of the Ad14P1 fiber knob in the F-G loop region, this did not significantly change the fiber knob affinity to DSG2 or the intracellular signaling and DSG2 shedding in epithelial cancer cells. IMPORTANCE: A number of widely distributed adenoviruses use the epithelial junction protein DSG2 as a receptor for infection and lateral spread. Interaction with DSG2 allows the virus not only to enter cells but also to open epithelial junctions which form a physical barrier to virus spread. Our study elucidates the mechanism beyond virus-triggered junction opening with a focus on adenovirus serotype 3. Ad3 binds to DSG2 with its fiber knob domain and triggers intracellular signaling that culminates in the cleavage of the extracellular domain of DSG2, thereby disrupting DSG2 homodimers between epithelial cells. We confirmed this pathway with a second DSG2-interacting serotype, Ad14, and its recently emerged strain Ad14P1. These new insights in basic adenovirus biology can be employed to develop novel drugs to treat adenovirus infection as well as be used as tools for gene delivery into epithelial tissues or epithelial tumors.


Asunto(s)
Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Desmogleína 2/metabolismo , Modelos Moleculares , Proteínas ADAM/metabolismo , Proteína ADAM17 , Adenovirus Humanos/química , Análisis de Varianza , Animales , Western Blotting , Cristalografía por Rayos X , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Fosforilación , Serogrupo , Especificidad de la Especie , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem
12.
Mol Ther Methods Clin Dev ; 2: 15005, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029716

RESUMEN

A central treatment resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. We have developed a small recombinant protein (JO-1) that triggers the transient opening of intercellular junctions and thus increases the efficacy of monoclonal antibodies and chemotherapeutic drugs without causing toxicity in mouse tumor models. Here, we provide data toward the clinical translation of an affinity-enhanced version of JO-1, which we call JO-4, in combination with PEGylated liposomal doxorubicin (PLD)/Doxil for ovarian cancer therapy. We have presented X-ray crystallography data suggesting a structural basis for the higher affinity of JO-4 to DSG2. We also confirmed JO-4 efficacy in a xenograft model with primary ovarian cancer cells showing that JO-4 can salvage Doxil therapy when given at a dose that was threefold lower than the therapeutic dose. Furthermore, we tested the safety of intravenous JO-4 alone and in combination with Doxil in Macaca fascicularis, an adequate animal model for predicting toxicity in humans. Our studies did not show critical JO-4-related toxicity or an increase of Doxil-related side effects. Our efficacy and safety data will help to support an Investigational new drug-filing for a JO-4/Doxil combination treatment.

13.
J Virol ; 87(21): 11346-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23946456

RESUMEN

Human adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14, as well as a recently emerged strain of Ad14 (Ad14p1), use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. Unlike Ad interaction with CAR and CD46, structural details for Ad binding to DSG2 are still elusive. Using an approach based on Escherichia coli expression libraries of random Ad3 and Ad14p1 fiber knob mutants, we identified amino acid residues that, when mutated individually, ablated or reduced Ad knob binding to DSG2. These residues formed three clusters inside one groove at the extreme distal end of the fiber knob. The Ad3 fiber knob mutant library was also used to identify variants with increased affinity to DSG2. We found a number of mutations within or near the EF loop of the Ad3 knob that resulted in affinities to DSG2 that were several orders of magnitude higher than those to the wild-type Ad3 knob. Crystal structure analysis of one of the mutants showed that the introduced mutations make the EF loop more flexible, which might facilitate the interaction with DSG2. Our findings have practical relevance for cancer therapy. We have recently reported that an Ad3 fiber knob-containing recombinant protein (JO-1) is able to trigger opening of junctions between epithelial cancer cells which, in turn, greatly improved the intratumoral penetration and efficacy of therapeutic agents (I. Beyer, et al., Clin. Cancer Res. 18:3340-3351, 2012; I. Beyer, et al., Cancer Res. 71:7080-7090, 2011). Here, we show that affinity-enhanced versions of JO-1 are therapeutically more potent than the parental protein in a series of cancer models.


Asunto(s)
Adenovirus Humanos/fisiología , Proteínas de la Cápside/metabolismo , Desmogleína 2/metabolismo , Interacciones Huésped-Patógeno , Mapeo de Interacción de Proteínas , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Mol Ther ; 21(2): 291-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23089733

RESUMEN

We have developed a technology that depletes the complement regulatory protein (CRP) CD46 from the cell surface, and thereby sensitizes tumor cells to complement-dependent cytotoxicity triggered by therapeutic monoclonal antibodies (mAbs). This technology is based on a small recombinant protein, Ad35K++, which induces the internalization and subsequent degradation of CD46. In preliminary studies, we had demonstrated the utility of the combination of Ad35K++ and several commercially available mAbs such as rituximab, alemtuzumab, and trastuzumab in enhancing cell killing in vitro as well as in vivo in murine xenograft and syngeneic tumor models. We have completed scaled manufacturing of Ad35K++ protein in Escherichia coli for studies in nonhuman primates (NHPs). In macaques, we first defined a dose of the CD20-targeting mAb rituximab that did not deplete CD20-positive peripheral blood cells. Using this dose of rituximab, we then demonstrated that pretreatment with Ad35K++ reconstituted near complete elimination of B cells. Further studies demonstrated that the treatment was well tolerated and safe. These findings in a relevant large animal model provide the rationale for moving this therapy forward into clinical trials in patients with CD20-positive B-cell malignancies.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/farmacología , Linfocitos B/inmunología , Depleción Linfocítica , Proteína Cofactora de Membrana/genética , Alemtuzumab , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales de Origen Murino/inmunología , Antígenos CD20/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Macaca , Proteína Cofactora de Membrana/inmunología , Ratones , Ratones Transgénicos , Rituximab , Trastuzumab
15.
Clin Cancer Res ; 18(12): 3340-51, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22535153

RESUMEN

PURPOSE: Epithelial junctions between tumor cells inhibit the penetration of anticancer drugs into tumors. We previously reported on recombinant adenovirus serotype 3-derived protein (JO-1), which triggers transient opening of intercellular junctions in epithelial tumors through binding to desmoglein 2 (DSG2), and enhances the antitumor effects of several therapeutic monoclonal antibodies. The goal of this study was to evaluate whether JO-1 cotherapy can also improve the efficacy of chemotherapeutic drugs. EXPERIMENTAL DESIGN: The effect of intravenous application of JO-1 in combination with several chemotherapy drugs, including paclitaxel/Taxol, nanoparticle albumin-bound paclitaxel/Abraxane, liposomal doxorubicin/Doxil, and irinotecan/Camptosar, was tested in xenograft models for breast, colon, ovarian, gastric and lung cancer. Because JO-1 does not bind to mouse cells, for safety studies with JO-1, we also used human DSG2 (hDSG2) transgenic mice with tumors that overexpressed hDSG2. RESULTS: JO-1 increased the efficacy of chemotherapeutic drugs, and in several models overcame drug resistance. JO-1 treatment also allowed for the reduction of drug doses required to achieve antitumor effects. Importantly, JO-1 coadmininstration protected normal tissues, including bone marrow and intestinal epithelium, against toxic effects that are normally associated with chemotherapeutic agents. Using the hDSG2-transgenic mouse model, we showed that JO-1 predominantly accumulates in tumors. Except for a mild, transient diarrhea, intravenous injection of JO-1 (2 mg/kg) had no critical side effects on other tissues or hematologic parameters in hDSG2-transgenic mice. CONCLUSIONS: Our preliminary data suggest that JO-1 cotherapy has the potential to improve the therapeutic outcome of cancer chemotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Uniones Intercelulares/efectos de los fármacos , Proteínas Virales/administración & dosificación , Adenoviridae , Animales , Línea Celular Tumoral , Desmogleína 2/metabolismo , Quimioterapia Combinada , Humanos , Ratones , Ratones SCID , Ratones Transgénicos , Proteínas Recombinantes/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Virol ; 86(11): 6286-302, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22457526

RESUMEN

We have recently reported that a group of human adenoviruses (HAdVs) uses desmoglein 2 (DSG2) as a receptor for infection. Among these are the widely distributed serotypes HAdV-B3 and HAdV-B7, as well as a newly emerged strain derived from HAdV-B14. These serotypes do not infect rodent cells and could not up until now be studied in small-animal models. We therefore generated transgenic mice containing the human DSG2 locus. These mice expressed human DSG2 (hDSG2) at a level and in a pattern similar to those found for humans and nonhuman primates. As an initial application of hDSG2-transgenic mice, we used a green fluorescent protein (GFP)-expressing HAdV-B3 vector (Ad3-GFP) and studied GFP transgene expression by quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry subsequent to intranasal and intravenous virus application. After intranasal application, we found efficient transduction of bronchial and alveolar epithelial cells in hDSG2-transgenic mice. Intravenous Ad3-GFP injection into hDSG2-transgenic mice resulted in hDSG2-dependent transduction of epithelial cells in the intestinal and colon mucosa. Our findings give an explanation for clinical symptoms associated with infection by DSG2-interacting HAdVs and provide a rationale for using Ad3-derived vectors in gene therapy.


Asunto(s)
Infecciones por Adenovirus Humanos/patología , Adenovirus Humanos/patogenicidad , Desmogleína 2/genética , Modelos Animales de Enfermedad , Receptores Virales/genética , Tropismo Viral , Infecciones por Adenovirus Humanos/virología , Animales , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Coloración y Etiquetado/métodos , Transducción Genética
17.
Cancer Res ; 71(22): 7080-90, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21990319

RESUMEN

The efficacy of monoclonal antibodies (mAb) used to treat solid tumors is limited by intercellular junctions which tightly link epithelial tumor cells to each another. In this study, we define a small, recombinant adenovirus serotype 3-derived protein, termed junction opener 1 (JO-1), which binds to the epithelial junction protein desmoglein 2 (DSG2). In mouse xenograft models employing Her2/neu- and EGFR-positive human cancer cell lines, JO-1 mediated cleavage of DSG2 dimers and activated intracellular signaling pathways which reduced E-cadherin expression in tight junctions. Notably, JO-1-triggered changes allowed for increased intratumoral penetration of the anti-Her2/neu mAb trastuzumab (Herceptin) and improved access to its target receptor, Her2/neu, which is partly trapped in tight junctions. This effect translated directly into increased therapeutic efficacy of trastuzumab in mouse xenograft models using breast, gastric, and ovarian cancer cells that were Her2/neu-positive. Furthermore, combining JO-1 with the EGFR-targeting mAb cetuximab (Erbitux) greatly improved therapeutic outcomes in a metastatic model of EGFR-positive lung cancer. A combination of JO-1 with an approach that triggered transient degradation of tumor stroma proteins elicited eradication of tumors. Taken together, our findings offer preclinical proof of concept to employ JO-1 in combination with mAb therapy.


Asunto(s)
Adenovirus Humanos/fisiología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Desmogleína 2/fisiología , Neoplasias Experimentales/tratamiento farmacológico , Proteínas Virales/farmacología , Animales , Línea Celular Tumoral , Cetuximab , Femenino , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Proteínas Recombinantes/uso terapéutico , Trastuzumab
18.
PLoS One ; 6(7): e22303, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21779410

RESUMEN

Monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA4) are a novel form of cancer immunotherapy. While preclinical studies in mouse tumor models have shown anti-tumor efficacy of anti-CTLA4 injection or expression, anti-CTLA4 treatment in patients with advanced cancers had disappointing therapeutic benefit. These discrepancies have to be addressed in more adequate pre-clinical models. We employed two tumor models. The first model is based on C57Bl/6 mice and syngeneic TC-1 tumors expressing HPV16 E6/E7. In this model, the HPV antigens are neo-antigens, against which no central tolerance exists. The second model involves mice transgenic for the proto-oncogen neu and syngeneic mouse mammary carcinoma (MMC) cells. In this model tolerance to Neu involves both central and peripheral mechanisms. Anti-CTLA4 delivery as a protein or expression from gene-modified tumor cells were therapeutically efficacious in the non-tolerized TC-1 tumor model, but had no effect in the MMC-model. We also used the two tumor models to test an immuno-gene therapy approach for anti-CTLA4. Recently, we used an approach based on hematopoietic stem cells (HSC) to deliver the relaxin gene to tumors and showed that this approach facilitates pre-existing anti-tumor T-cells to control tumor growth in the MMC tumor model. However, unexpectedly, when used for anti-CTLA4 gene delivery in this study, the HSC-based approach was therapeutically detrimental in both the TC-1 and MMC models. Anti-CTLA4 expression in these models resulted in an increase in the number of intratumoral CD1d+ NKT cells and in the expression of TGF-ß1. At the same time, levels of pro-inflammatory cytokines and chemokines, which potentially can support anti-tumor T-cell responses, were lower in tumors of mice that received anti-CTLA4-HSC therapy. The differences in outcomes between the tolerized and non-tolerized models also provide a potential explanation for the low efficacy of CTLA4 blockage approaches in cancer immunotherapy trials.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/inmunología , Inmunoterapia/métodos , Animales , Antígeno CTLA-4 , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Femenino , Células Madre Hematopoyéticas/citología , Inmunohistoquímica , Lentivirus , Neoplasias Mamarias Animales/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
J Virol ; 85(13): 6390-402, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21525338

RESUMEN

Recently, we identified desmoglein 2 (DSG2) as the main receptor for a group of species B adenoviruses (Ads), including Ad3, a serotype that is widely distributed in the human population (H. Wang et al., Nat. Med. 17:96-104, 2011). In this study, we have attempted to delineate structural details of the Ad3 interaction with DSG2. For CAR- and CD46-interacting Ad serotypes, attachment to cells can be completely blocked by an excess of recombinant fiber knob protein, while soluble Ad3 fiber knob only inefficiently blocks Ad3 infection. We found that the DSG2-interacting domain(s) within Ad3 is formed by several fiber knob domains that have to be in the spatial constellation that is present in viral particles. Based on this finding, we generated a small recombinant, self-dimerizing protein containing the Ad3 fiber knob (Ad3-K/S/Kn). Ad3-K/S/Kn bound to DSG2 with high affinity and blocked Ad3 infection. We demonstrated by confocal immunofluorescence and transmission electron microscopy analyses that Ad3-K/S/Kn, through its binding to DSG2, triggered the transient opening of intercellular junctions in epithelial cells. The pretreatment of epithelial cells with Ad3-K/S/Kn resulted in increased access to receptors that are localized in or masked by epithelial junctions, e.g., CAR or Her2/neu. Ad3-K/S/Kn treatment released CAR from tight junctions and thus increased the transduction of epithelial cells by a serotype Ad5-based vector. Furthermore, the pretreatment of Her2/neu-positive breast cancer cells with Ad3-K/S/Kn increased the killing of cancer cells by the Her2/neu-targeting monoclonal antibody trastuzumab (Herceptin). This study widens our understanding of how Ads achieve high avidity to their receptors and the infection of epithelial tissue. The small recombinant protein Ad3-K/S/Kn has practical implications for the therapy of epithelial cancer and gene/drug delivery to normal epithelial tissues.


Asunto(s)
Adenovirus Humanos/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Desmogleína 2/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína/fisiología , Receptores Virales/metabolismo , Adenovirus Humanos/genética , Adenovirus Humanos/patogenicidad , Proteínas de la Cápside/genética , Línea Celular , Células Epiteliales , Células HeLa , Humanos , Uniones Intercelulares , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción Genética
20.
Mol Ther ; 19(3): 479-89, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21081901

RESUMEN

Extracellular matrix (ECM) in solid tumors affects the effectiveness of therapeutics through blocking of intratumoral diffusion and/or physical masking of target receptors on malignant cells. In immunohistochemical studies of tumor sections from breast cancer patients and xenografts, we observed colocalization of ECM proteins and Her2/neu, a tumor-associated antigen that is the target for the widely used monoclonal antibody trastuzumab (Herceptin). We tested whether intratumoral expression of the peptide hormone relaxin (Rlx) would result in ECM degradation and the improvement of trastuzumab therapy. As viral gene delivery into epithelial tumors with extensive tumor ECM is inefficient, we used a hematopoietic stem cell (HSC)-based approach to deliver the Rlx gene to the tumor. In mouse models with syngeneic breast cancer tumors, HSC-mediated intratumoral Rlx expression resulted in a decrease of ECM proteins and enabled control of tumor growth. Moreover, in a model with Her2/neu-positive BT474-M1 tumors and more treatment-refractory tumors derived from HCC1954 cells, we observed a significant delay of tumor growth when trastuzumab therapy was combined with Rlx expression. Our results have implications for antibody therapy of cancer as well as for other anticancer treatment approaches that are based on T-cells or encapsulated chemotherapy drugs.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias de la Mama/terapia , Matriz Extracelular , Receptor ErbB-2 , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Matriz Extracelular/metabolismo , Femenino , Orden Génico , Terapia Genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Trasplante de Células Madre Hematopoyéticas , Humanos , Espacio Intracelular/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Unión Proteica , Transporte de Proteínas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Relaxina/genética , Relaxina/metabolismo , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...